Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding
نویسندگان
چکیده
منابع مشابه
Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding
Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the...
متن کاملThermal conductivity of twisted bilayer graphene.
We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This find...
متن کاملMeasuring Interlayer Shear Stress in Bilayer Graphene.
Monolayer two-dimensional (2D) crystals exhibit a host of intriguing properties, but the most exciting applications may come from stacking them into multilayer structures. Interlayer and interfacial shear interactions could play a crucial role in the performance and reliability of these applications, but little is known about the key parameters controlling shear deformation across the layers an...
متن کاملStacking-dependent optical conductivity of bilayer graphene.
The optical conductivities of graphene layers are strongly dependent on their stacking orders. Our first-principle calculations show that, while the optical conductivities of single-layer graphene (SLG) and bilayer graphene (BLG) with Bernal stacking are almost frequency-independent in the visible region, the optical conductivity of twisted bilayer graphene (TBG) is frequency-dependent, giving ...
متن کاملConductivity engineering of graphene by defect formation
Transport measurements have revealed several exotic electronic properties of graphene. The possibility to influence the electronic structure and hence control the conductivity by adsorption or doping with adatoms is crucial in view of electronics applications. Here, we show that in contrast to expectation, the conductivity of graphene increases with increasing concentration of vacancy defects, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep22011